
CSRI Summer Proceedings 2013 1

A COMPARISON OF PRECONDITIONERS FOR SOLVING LINEAR
SYSTEMS ARISING FROM GRAPH LAPLACIANS∗

KEVIN DEWEESE† AND ERIK G. BOMAN‡

Abstract. We consider the solution of linear systems corresponding to the combinatorial and
normalized graph Laplacians of large unstructured networks. We only consider undirected graphs,
so the corresponding matrices are symmetric. A promising approach to solving these problems is to
use a class of support graph preconditioners. We previously implemented such a preconditioner in
Trilinos in serial using the Epetra software stack. This work extends that implementation to run
in parallel on distributed memory systems and migrates the implementation to the Tpetra software
stack to help with future development. This preconditioner is compared against other preconditioners
currently available in Trilinos. We show that domain decomposition is an effective preconditioning
method for network problems. Our support graph preconditioner can be used as a local (serial)
subdomain solver.

1. Introduction. Networks play an important role in many application areas,
for example engineering, social sciences, and biology [8]. We focus on networks that
are large and unstructured. Several analysis techniques rely on solving linear systems
and eigensystems of graph Laplacians such as random walks [4] and Katz centrality
scores [6] using linear solvers and graph partitioning [10] and clustering [11] using
eigensolvers. These solvers can be very compute intensive tasks but precondition-
ers can be used to dramatically reduce the solution time. Although there are many
good preconditioners for PDEs, they are generally not well suited for graph Laplacians
from highly irregular graphs or scale-free networks. Several graph based precondition-
ers with strong theoretical results have been developed over the past decade [7, 9].
However these are difficult to implement. We instead seek to better understand the
support tree preconditioner first proposed by Vaidya [1] and how it compares to other
preconditioners on these graph problems.

1.1. Background. The combinatorial Laplacian of an undirected graph G is
given by

LG = D −AG

where AG is the adjacency matrix of G and D is the diagonal matrix containing the
sum of adjacent edge weights, or in the unweighted case just the vertex degree. A
special scaling of this matrix called the normalized Laplacian is given by

NG = D−1/2LGD−1/2.

Both LG and NG are positive-semidefinite and diagonally dominant. An interesting
note is that solving LGx = b can be done indirectly by solving NGx′ = b′. We can
see this by setting x′ = D1/2x and b′ = D−1/2b yielding the following.

∗This paper will be included in the CSRI Summer Proceedings 2013 from Sandia National Labo-
ratories. It is also available as technical report SAND-2013-9772-P.

†UC Santa Barbara Dept. of Computer Science, kdeweese@cs.ucsb.edu. This work was performed
during an internship at Sandia.

‡Sandia National Laboratories, egboman@sandia.gov. Sandia is a multi-program laboratory man-
aged and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corpora-
tion, for the U.S. Department of Energys National Nuclear Security Administration under contract
DE-AC04-94AL85000.



2 A Comparison of Preconditioners

NGx′ = b′

D−1/2LGD−1/2D1/2x = D−1/2b

D1/2D−1/2LGx = b

LGx = b

Thus if solving one system is more efficient than the other, perhaps the normalized
Laplacian as it is typically better conditioned, then it could be solved and the solution
converted. However the eigenproblems must be solved separately as each Laplacian
has a different spectra.

1.2. Preconditioners. A good preconditioner M for a matrix A should reduce
the number of iterations of the preconditioned system M−1A. In other words M
should be a good inverse approximation of A. In addition solving the system Mw = y
should be much easier to solve than Ax = b as it will be solved at every iteration. The
first constraint prompts us to bound the condition number of M−1A while the second
constraint requires us to bound the fill in the triangular factors of the preconditioner.
Assuming a complete Cholesky factorization is used these factors will be of the form
M = CCT and will be used to quickly solve CCT w = y. Perhaps the most simple
preconditioner is the Jacobi method that sets M = D where D is the diagonal of
A. While not a very good inverse approximation this preconditioner is very cheap
to apply at every iteration. A slightly better inverse approximation could be used
such as the symmetric Gauss-Seidel preconditioner that decomposes the input matrix
into triangular parts A = L + D + U and uses M = (D + L)D−1(D + U). Another
popular preconditioning technique is to use an incomplete Cholesky factorization to
approximately factor the matrix A 'M = C̃C̃T by dropping some entries during the
factorization of A.

The first of a class of support graph preconditioners was proposed by Vaidya.
The basic version finds a maximum-weight spanning tree of the graph of A and uses
this as a preconditioner. (For details, see [1].) This preconditioner has condition
number O(nm) which bounds the number of iterations of the preconditioned system
to O(

√
nm), where n is the dimension of the matrix (number of vertices) and m is

the number of non-zero entries of the matrix (number of edges). However these are
worst case bounds and typically the number of iterations required is much less. Since
the preconditioner corresponds to a tree it can be factored with no fill.

2. Software. A version of Vaidya’s preconditioner was previously implemented
inside the Ifpack package of Trilinos [5]. Ifpack uses Epetra linear algebra primitives
as opposed to the more recent, templated Tpetra primitives. Tpetra allows arbitrary
scalar data types and arbitrary index types. Most future Trilinos development will
focus on packages using this new Tpetra stack. For these reasons we decided to
migrate all future work concerning support graph preconditioners to this new Tpetra
software stack. The packages relevant to our work can be seen in Figure 2.1.

To accomplish this migration and improve upon the previous support graph im-
plementation a few pieces of software were added to the Trilinos software library.



Kevin Deweese and Erik G. Boman 3

Feature Old Stack New Stack
Core Epetra Tpetra
Sparse Direct Amesos Amesos2
Preconditioners Ifpack Ifpack2
Partitioning and Ordering Zoltan Zoltan2

Fig. 2.1. Trilinos software stack

Previously Trilinos did not contain a sparse Cholesky solver. Using the Amesos2
adapter package an interface was added to the CHOLMOD package [2]. Addition-
ally a support graph preconditioner was added to the Ifpack2 preconditioner package
which creates the support graph and calls the CHOLMOD interface to perform a
complete factorization. Furthermore a bug in Ifpack2’s Additive Schwarz domain
decomposition class was corrected so that it could be used with the support graph
preconditioner.

3. Experimental. Experiments were run to solve preconditioned linear systems
using the conjugate gradient solver in the Belos linear solver package in Trilinos. The
right hand sides were generated by multiplying L by a random solution x. Exper-
iments were run on 4 different graphs from the University of Florida sparse matrix
collection [3] shown in Figure 3.1. The first 3 graphs in this table are network graphs
and experiments were run using both the combinatorial Laplacian and normalized
Laplacian matrices of these graphs. An important note is that these graphs are all
unweighted so the support graph preconditioner of the combinatorial Laplacian is
simply a random spanning tree. The last graph is a stiffness matrix problem included
to see how a support graph preconditioner fares on a more traditional problem. Ex-
periments with the MSF support graph preconditioner were run with slightly random
edge weights so that the on the unweighted combinatorial Laplaican a random tree
would be selected every time. The diagonal of the original matrix was kept for the
preconditioner and on the F1 graph was scaled so the preconditioner would be positive-
definite. The performance of the support graph preconditioner was compared against
other Ifpack2 preconditioners. These include Jacobi, Symmetric Gauss-Seidel (SGS),
and Incomplete Lower-Upper (ILUT). In parallel, Ifpack2’s Additive Schwarz with no
overlap was used with the support graph and ILUT preconditioners as sub-domain
solvers. Ideally ILUT would be replaced with Incomplete Cholesky as we are dealing
with symmetric matrices but this is currently not implemented in Ifpack2. The de-
fault ILUT parameters were used including a drop tolerance of 10−12 and fill value
of 1. Additionally ILUT required a small, relative scaling of the diagonal (∼1.01)
to ensure a positive-definite preconditioner. All experiments were run on a 64 core
shared-memory linux server (vesper@sandia.gov). Zoltan2’s interface to the Scotch
partitioner was used to distribute matrix rows amongst processors. Experiments were
done with partitioning turned on and off using 8 cores to demonstrate the effect of
partitioning on the various solvers. Scaling experiments were performed up to 32
cores.

4. Results.

4.1. Serial. The results of serial solves on the flickr graph for both the combina-
torial and normalized Laplacians can be seen in Figure 4.1. It is clear from using no
preconditioning on the combinatorial Laplacian that some preconditioning method
is needed. In the combinatorial case MSF yields the best solution time with SGS



4 A Comparison of Preconditioners

Graph Rows (Vertices) NNZ (Edges × 2)
flickr 820,878 13,250,560
as-Skitter 1,696,415 22,190,596
hollywood-2009 1,139,905 57,515,616
F1 343,791 26,493,322

Fig. 3.1. Graphs used in experiments

Iters. Solve Time (s)
MSF 42 6.247
Jacobi 76 7.841
SGS 25 7.411
ILUT 30 8.331
None 2689 266.3

(a) Combinatorial Laplacian

Iters. Solve Time (s)
MSF 54 7.713
Jacobi 86 8.942
SGS 49 14.32
ILUT 64 15.85
None 86 8.573

(b) Normalized Laplacian

Fig. 4.1. Serial results on flickr graph

yielding the fewest number of iterations. The normalized Laplacian is scaled so that
solving without preconditioning is equivalent to using Jacobi. Interestingly, in the
normalized case the preconditioned solves are all slightly more expensive. One idea
being considered to solve the combinatorial problem involves solving the normalized
problem and converting the solution vector since the normalized problem should be
better conditioned. However, these results seem to suggest such a method would not
be fruitful. In Figure 4.2 the convergence rates are shown by the normalized residual
at each iteration. Interestingly, the preconditioners seem to have very similar conver-
gence rates that just appear to be off by some constant which seems to be smaller in
the normalized case.

4.2. Partitioning. The Scotch graph partitioning algorithm was used in paral-
lel solves to try and increase the quality of the preconditioner and improve the load
balance across processors. The results with partitioning turned on and off for 8 proces-
sors on the as-Skitter combinatorial Laplacian are shown in Figure 4.3. Improvement
in the quality of the preconditioner can be inferred by the change in iteration count
while the change in run time is some mix of load balance improvement and change in
preconditioner quality. Jacobi behaves as expected; since it just uses diagonal scaling
the quality of the preconditioner does not change but load balancing greatly improves
performance. Only with ILUT does using partitioning seem to greatly improve the
quality of the preconditioner. Each sub-domain incomplete factorization needs to have
as many edges as possible to improve quality. However, the number of edges in the
MSF sub-domain is constant so having an extra edge in the sub-domain won’t change
the quality much. The graph algorithm might have selected this edge instead but
some other edge would not have been selected. This leads us to believe that the MSF
preconditioner should scale reasonably well since losing the edges off processor won’t
hurt the preconditioner quality much. Since turning partitioning on always leads to
at least slightly better performance due to better load balancing, it is always turned
on for the scaling experiments in the next section.

4.3. Scaling. Up to 32 cores were used to perform scaling experiments on as-
Skitter and hollywood-2009. Results for as-Skitter’s combinatorial Laplacian are



Kevin Deweese and Erik G. Boman 5

100 101 102

10−6

10−5

10−4

10−3

10−2

10−1

Iteration

N
or

m
al

iz
ed

R
es

id
ua

l

MSF
Jacobi
SGS
ILUT

(a) Combinatorial Laplacian

100 101 102

10−6

10−5

10−4

10−3

10−2

10−1

Iteration

N
or

m
al

iz
ed

R
es

id
ua

l

MSF
Jacobi
SGS
ILUT

(b) Normalized Laplacian

Fig. 4.2. Iterations to convergence

Iters. Solve Time (s)
None 18 9.516
Scotch 17 8.695

(a) MSF

Iters. Solve Time (s)
None 122 10.71
Scotch 128 4.005

(b) Jacobi

Iters. Solve Time (s)
None 116 16.39
Scotch 128 6.166

(c) SGS

Iters. Solve Time (s)
None 120 16.45
Scotch 56 7.613

(d) ILUT

Fig. 4.3. Partitioning results using 8 cores on as-Skitter combinatorial Laplacian

shown in Figure 4.4. A trial with no preconditioning was run but the performance
was so poor (10 to 100 × slower) that the results are excluded. Results for as-Skitter’s
normalized Laplacian are shown in Figure 4.5. The number of iterations required for
each preconditioner doesn’t fluctuate much as the number of processors increases and
their order stays relative the same. Some fluctuation in iteration count is expected
due to using a random right hand side during every solve. Jacobi seems to have the
best solve time performance though as the number of processors increase the gap
between the preconditioners decreases. Since Jacobi and MSF seem the most com-
petitive the experiments on the larger hollywood-2009 were run only with them. The
combinatorial results are shown in Figure 4.6 and the normalized results are shown
in Figure 4.7. The number of iterations for both of these methods seems to fluctuate
a bit more on this larger graph though the gap between them stays the same. With
the exception of MSF on 2 processors both methods seem to scale well regarding
solve time. We suspect that there is some initial MPI overhead causing the spike at
2 processors which is quickly overcome.

4.4. Stiffness Matrix. Out of curiosity we ran one experiment on a more tra-
ditional stiffness matrix F1. This matrix is symmetric positive-definite so no modifi-
cations were needed to use Belos’ CG solver. However, this matrix has both positive
and negative off-diagonal entries so the diagonal of the MSF and ILUT precondition-
ers had to be modified to ensure the preconditioners were positive-definite. Solves
were done using 32 cores and the results are shown in 4.8. ILUT and MSF perform



6 A Comparison of Preconditioners

100 101

20

40

60

80

100

120

140

Processors

It
er

at
io

ns

(a) Iteration Performance

100 101
0

10

20

30

Processors

T
im

e
(s

)

MSF
Jacobi
SGS
ILUT

(b) Timing Performance

Fig. 4.4. Scaling on as-Skitter graph combinatorial Laplacian

100 101
60

80

100

120

140

160

Processors

It
er

at
io

ns

(a) Iteration Performance

100 101

0

20

40

60

Processors

T
im

e
(s

)

MSF
Jacobi
SGS
ILUT

(b) Timing Performance

Fig. 4.5. Scaling on as-Skitter graph normalized Laplacian

relatively better against Jacobi and SGS than they did in with the network graphs.
The structure of this graph is much simpler so we suspect that the main reason is the
introduction of edge weights.

5. Conclusions. It is clear that some method of preconditioning is required to
solve linear systems coming from graphs. However, it is not clear if a support graph
preconditioner is useful or if something as simple as Jacobi should be used instead.
We observed that Jacobi preconditioning works quite well: even if the iteration count
is high, each iteration is very fast. We remark that MSF is a simple support graph
preconditioner and there is potentially room for improvement by choosing better sub-
graphs. Domain decomposition was shown to be a good parallel preconditioner as the
number of iterations stayed almost constant as the number of processors (subdomains)
increased. Partitioning has been shown to be useful for all the preconditioners tested
but most important for SGS and ILUT. All of the preconditioners seem to scale well
on the graphs used as the number of processors increase. This suggests that using
additive Schwarz with local (serial) preconditioning is a viable approach for network
problems. We observed that it is typically more difficult (longer run times) to solve
for the normalized Laplacian so using the normalized Laplacian to solve a system
arising from the combinatorial Laplacian does not seem viable.



Kevin Deweese and Erik G. Boman 7

100 101

46

48

50

52

54

Processors

It
er

at
io

ns

(a) Iteration Performance

100 101

10

20

30

40

Processors

T
im

e
(s

)

MSF
Jacobi

(b) Timing Performance

Fig. 4.6. Scaling on hollywood-2009 graph combinatorial Laplacian

100 101
65

70

75

80

85

90

Processors

It
er

at
io

ns

(a) Iteration Performance

100 101

20

40

60

80

Processors

T
im

e
(s

)

MSF
Jacobi

(b) Timing Performance

Fig. 4.7. Scaling on hollywood-2009 graph normalized Laplacian

6. Future Work. Most of the software for these experiments was written re-
cently and has had limited testing. Tests and documentation are needed before this
software is brought out of experimental status. There are a few followup experiments
that should be run. A set of weak scaling experiments would help understand how
these methods perform as graph sizes increase. This will require choosing a reasonable
graph generator. These experiments used the matrix ordering in the original files and
it is possible that this ordering might be helping some of the methods. In particular,
the incomplete Cholesky/LU and Gauss-Seidel methods are known to be sensitive to
ordering. Therefore, an investigation of the effect of ordering should be performed.

Acknowledgment.
The authors would like to thank Karen Devine, Rich Lehoucq, and Siva Rajaman-
ickam.

REFERENCES

[1] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo, Support-graph
preconditioners, SIAM J. on Matrix Anal. and Appl., 27 (2006), pp. 930–951.

[2] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam, Algorithm 887: Cholmod,
supernodal sparse cholesky factorization and update/downdate, ACM Trans. Math. Softw.,



8 A Comparison of Preconditioners

Iters. Solve Time (s)
MSF 408 3.106
Jacobi 580 4.254
SGS 297 7.168
ILUT 199 3.654

Fig. 4.8. F1 stiffness matrix solved using 32 cores

35 (2008), pp. 22:1–22:14.
[3] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Transac-

tions on Mathematical Software, 38 (2011), pp. 1:1–1:25.
[4] L. Grady, Random walks for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell.,

28 (2006), pp. 1768–1783.
[5] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,

R. . B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
Thornquist, R. S. Tuminaro, J. M. . Willenbring, A. Williams, and K. S. Stanley,
An overview of the trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423.

[6] L. Katz, A new status index derived from sociometric analysis, Psychometrika, 18 (1953),
pp. 39–43.

[7] I. Koutis, G. Miller, and R. Peng, Approaching optimality for solving SDD linear systems,
in Proc. of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society, 2010, pp. 235–244.

[8] M. Newman, Networks: An Introduction, Oxford University Press, Inc., New York, NY, USA,
2010.

[9] D. A. Spielman and S.-H. Teng, Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solvi ng linear systems, in Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, STOC ’04, New York, NY, USA, 2004, ACM, pp. 81–
90.

[10] D. A. Spielman and S.-H. Teng, Spectral partitioning works: Planar graphs and finite element
meshes, Linear Algebra and its Applications, 421 (2007), pp. 284 – 305.

[11] U. von Luxburg, A tutorial on spectral clustering, CoRR, abs/0711.0189 (2007).


